Synonyme: Magnetresonanztomographie, MRT, Kernspintomographie, KST, Kernspin-Resonanz-Tomographie
Englisch: magnet resonance imaging, MRI, nuclear magnetic resonance, NMR
Die Kernspintomographie, kurz MRT oder KST, ist ein bildgebendes Verfahren zur Darstellung des menschlichen Körpers. Sie gehört zur Untergruppe der Schnittbildverfahren.
Sie arbeitet im Gegensatz zur Röntgenuntersuchung nicht mit Röntgenstrahlen, sondern mit sehr starken, konstanten Magnetfeldern und Radiowellen.
Die Untersuchungsmethode beruht auf dem physikalischen Prinzip, dass Atomkerne mit ungerader Protonen- oder Neutronenzahl über einen Eigendrehimpuls, den sog. Spin verfügen. Sie werden dadurch zu winzigen Magneten. Der für die Messung geeignetste Atomkern ist das Wasserstoffatom, aber auch 14N, 31P, 23Na und 19F können herangezogen werden. Daher liefert das MRT vor allem von wasserhaltigen Geweben sehr genaue und differenzierte Darstellungen, z.B. von inneren Organen, Gelenkknorpel, Meniskus, Rückenmark und Gehirn.
Im Normalzustand sind die Spins ungeordnet. Legt man jedoch ein starkes Magnetfeld an, richten sich die Atomkerne wie eine Kompassnadel parallel oder antiparallel zur Feldrichtung aus und vollführen eine Kreiselbewegung um die Feldlinien des äußeren Magnetfeldes, die man auch als Präzessionsbewegung bezeichnet. Die Frequenz dieser Bewegung wird Larmor-Frequenz genannt.
Die Ausrichtung der Kernspins allein würde noch keine Bilddarstellung erzeugen. Deshalb wird senkrecht zur Richtung des Magnetfelds ein kurzer Hochfrequenzimpuls eingestrahlt. Die Frequenz des Impulses (Resonanzfrequenz) entspricht dabei der Lamor-Frequenz. Der Impuls hat folgende Konsequenzen:
Nach dem Impuls richten sich die Kernspins wieder entlang des äußeren Magnetfelds aus und geben dabei Energie in Form von Wärme an die Umgebung ab. Diesen Prozess der Wiederausrichtung, genauer gesagt des Wiederaufbaus der Längsmagnetisierung, bezeichnet man als "T1-Relaxation". Er hängt wesentlich von der Wärmeleitfähigkeit des Gewebes ab. Gewebe mit schnellem Wärmetransfer (z.B. Fettgewebe) stellen sich in T1-gewichteten Bildern hell dar, Gewebe mit langsamem Wärmetransfer dunkel (z.B. Liquor).
Es kann jedoch noch ein weiterer Aspekt gemessen werden. Mit dem Ausschalten des Hochfrequenzimpulses verlieren die Atomkerne auch ihre phasensynchrone Kreiselbewegung. Der damit verbundene Rückgang der Transversalmagnetisierung wird als T2-Relaxation bezeichnet. Gewebe, die eine Transversalmagnetisierung relativ lange aufrechterhalten können, stellen sich in T2-gewichteten Bildern hell dar (z.B. Wasser).
Durch Veränderung der Geräteparameter (MRT-Systemparameter), z.B. der Pulswiederholzeit (TR) oder der Echozeit (TE) kann man am MRT unterschiedliche Wichtungen einstellen:
Die konkrete elektromagnetische Pulssequenz, die bei einer Untersuchung durchgeführt wird, bezeichnet man als MRT-Sequenz.
Durch Kenntnis der unterschiedlichen Magnetisierungsverhalten verschiedener Gewebetypen und eine hohe Auflösung können vom Radiologen anhand der MRT-Bilder pathologische Veränderungen sehr gut erkannt oder ausgeschlossen werden. MRT-Bilder haben in der Regel eine recht hohe Aussagekraft.
Abhängig vom Gewebe im Zielgebiet sind meist bereits kleine Tumoren oder Entzündungsherde detektierbar. Die Darstellung und Differenzierung verschiedener Gewebe kann durch den Einsatz spezieller Kontrastmittel (v.a. Gadolinium) deutlich verbessert werden.
Typisch für das MRT-Untersuchungsgerät ist die lange, relativ enge Röhre, in die der Patient auf einem Liegeschlitten hinein geschoben wird. Die Untersuchungen dauern verhältnismäßig lang, durchschnittlich 15-30 Minuten. Dabei gestalten die Enge und die vom MRT-Gerät erzeugten lauten Klopfgeräusche die Untersuchung leider für den Patienten nicht immer sehr angenehm.
Ein MRT-Gerät erzeugt ein äußerst starkes Magnetfeld. Ein solch starkes Magnetfeld ist maßgeblich für die Auflösung der zu erzeugenden MRT-Bilder. Die magnetische Flussdichte B wird in Tesla angegeben. Ein Tesla entspricht etwa der 20.000fachen Stärke des Erdmagnetfeldes. Die supraleitenden Magnetspulen neuer Tomographen erzeugen in der Regel eine magnetische Flussdichte von 1,5 bis 3 Tesla. In einzelnen, spezialisierten Zentren werden Geräte von bis zu 7 Tesla eingesetzt. Es existieren auch MRT-Geräte mit Flussdichten von 8 bis 9,4 Tesla (2020), die zur Zeit jedoch noch nicht im klinischen Einsatz sind.
Metallische Gegenstände (dazu zählen u.a. mitgeführte Gegenstände wie Geldbeutel, EC-Karten, Schlüssel, aber auch Metallimplantate, Herzschrittmacher, Granatsplitter etc.) dürfen nicht in die Nähe eines MRT-Gerätes gebracht werden.
Neuere MRT-Geräte wie z.B. das Upright-MRT ermöglichen eine Untersuchung im Sitzen, Stehen oder diversen Funktionsstellungen. Im Gegensatz zu den zylindrisch gewickelten Magnetspulen von Röhrensystemen stehen die Magnetpole des Upright-MRT senkrecht.
Die MRT ist ein aufgrund ihrer sehr guten Qualität und ihrer breitgefächerten Möglichkeiten gerne eingesetztes diagnostisches Verfahen. Sie ist bei vielen klinischen Fragestellungen anderen bildgebenden Verfahren (z.B. Röntgen, Sonographie, Computertomographie, etc.) überlegen. Ein großer Nachteil sind jedoch die sehr hohen Kosten (ca. 4mal teurer als Computertomographie oder 10mal so teuer wie Röntgen), die lange Dauer und meist als eher unangenehm empfundene Untersuchung, sowie die Kontraindikation bei Herzschrittmachern oder anderen metallischen Implantaten, so dass die MRT nur bei gewissen Fragestellungen angezeigt ist. Die meisten Krankheitsbilder sind auch heute durch eine gute Anamnese, klinische Untersuchung, Blutuntersuchung und mit Hilfe von günstigeren und ähnlich aufschlussreichen bildgebenden oder anderen diagnostischen Verfahren gut abklärbar.
Abkürzung | Erklärung | Synonym |
---|---|---|
CE-FAST: Contrast Enhanced Fast Acquisition in the Steady State | GE mit SE-Anteil durch Ausnutzung der Gleichgewichtsmagnetisierung | PSIF, CE-GRASS |
CISS: Constructive Interference in Steady State | Zwei GE-Sequenzen, deren Einzelsignale konstruktiv addiert werden | |
CORE: Clinically Optimized Regional Exams | ||
CSFSE: Contiguous Slice Fast-acquisition Spin Echo | ||
CSI: Chemical Shift Imaging | ||
DANTE: Delays Alternating with Nutations for tailored excitation | Serie von Pulsen | |
DE-FLASH: Doppelecho – Fast Low Angle Shot | ||
DEFAISE: Dual Echo Fast Acquisition Interleaved Spin Echo | ||
DEFGR: Driven Equilibrium Fast Grass | ||
DESS: Double Echo Steady State | Doppel-GE-Sequenz, bei der die Signale zu einem addiert werden | |
EPI: Echo Planar Imaging | Multiple GE nach einer Anregung; oft alle Rohdaten in einem Pulszug | |
EPSI: Echo Planar Spectroscopic Imaging | ||
FADE: Fast Acquisition Double Echo | ||
FAISE: Fast Acquisition Interleaved Spin Echo | ||
FAST: Fast Acquired Steady state Technique | GE mit Ausnutzung der Gleichgewichtsmagnetisierung | FISP |
FEER: Field Echo with Even echo Rephasing | ||
FFE: Fast Field Echo | GE mit Kleinwinkelanregung | FISP |
FISP: Fast Imaging with Steady state Precession | GE mit Ausnutzung der Gleichgewichtsmagnetisierung | |
FLAIR: Fluid Attenuated Inversion Recovery | SE mit vorgeschaltetem 180°-Puls, lange Inversionszeit zur Unterdrückung des Flüssigkeitssignals | |
FLAME: Fast Low Angle Multi-Echo | ||
FLARE: Fast Low Angle with Relaxation Enhancement | ||
FLASH: Fast Low Angle Shot | GE mit Kleinwinkelanregung, üblicherweise mit HF-Spoiling | T1-FFE, Spoiled GRASS, SPGR |
GRASS: Gradient Refocused Acquisition in the Steady State | GE mit Ausnutzung der Gleichgewichtsmagnetisierung | FISP, FAST |
GRE: Gradienten-Echo | GE | |
HASTE: Half fourier-Acquired Single shot Turbo spin Echo | Turbo-SE mit Half-Fourier-Akquisition, alle Rohdaten in einem Pulszug | |
IR: Inversion Recovery | SE o.a. mit vorgeschaltetem 180°-Puls | |
IRABS: Inversion Recovery Fast Grass | ||
LOTA: Long Term Averaging | ||
MAST: Motion Artifact Suppression Technique | ||
MPGR: slice-MultiPlexed Gradient Refocused acquisition with steady state | ||
MP-RAGE: Magnetization Prepared Rapid Gradient Echo | 3D-Variante von Turbo-FLASH | |
MSE: Modified Spin Echo | ||
PCMHP: Phasenkontrast-Multi-Herzphasen | ||
PSIF: Precision Study with Imaging Fast (umgedrehtes FISP) | GE mit SE-Anteil durch Ausnutzung der Gleichgewichtsmagnetisierung | CE-FAST, CE-GRASS |
RARE: Rapide Acquisition with Relaxation Enhancement | SE mit mehreren 180°-Pulsen, pro Echo eine Rohdatenzeile | TSE, FSE |
RASE: Rapid Acquisition Spin Echo | ||
RASEE: Rapid Acquisition Spin Echo Enhanced | ||
SE: Spin-Echo | 90°–180°-Pulsfolge | |
SENSE: Sensitivity-Encoded | ||
SMASH: Simultaneous Acquisition of Spatial Harmonics | ||
SPGR: Spoiled Gradient Recalled Acquisition in the Steady State | Gradienten-Echo mit Spoilern | FLASH |
STE: Stimulated Echo | ||
STEAM: Stimulated Echo Acquisition Mode | Pulsfolge mit drei 90°-Pulsen | |
SPIR: Spectral Presaturation with Inversion Recovery | Fett-Unterdrückung | |
SR: Saturation Recovery Sequence | SE o.a. mit vorgeschaltetem 90°-Puls | |
SSFP: Steady State Free Precession | ||
STIR: Short-Tau Inversion Recovery | ||
TFL: Turbo Flash | ||
TGSE: Turbo Gradient Spin Echo | Turbo-SE-Sequenz, bei der die SE von GE umgeben sind | GRASE |
TIRM: Turbo-Inversion Recovery-Magnitude | Turbo-SE mit vorgeschaltetem 180°-Puls, Darstellung des Absolutsignals | |
TRUE-FISP: True Fast Imaging With Steady Precession | GE mit Ausnutzung der Gleichgewichtsmagnetisierung, alle Gradienten sym. | SSFP |
TRUFI: True Fast Imaging With Steady Precession | ||
Turbo-FLASH: Turbo Fast Low Angle Shot | FLASH mit vorgeschaltetem 180°-Puls (IR) oder 90°-Puls (SR) | |
TSE: Turbo-Spin-Echo | SE mit mehreren 180°-Pulsen, pro Echo eine Rohdatenzeile | FSE, RARE |
UTSE: Ultra-fast Turbo Spin-Echo | ||
VIBE: Volume Interpolated Breathhold Examination |
(Tabelle modifiziert nach wikipedia)
Die Weiterentwicklung der Kernspintomographie hat zur Entwicklung weiterer Untersuchungsvarianten geführt, z.B. die:
Tags: KST, MRT, Tomographie
Fachgebiete: Radiologie
Diese Seite wurde zuletzt am 14. September 2020 um 12:39 Uhr bearbeitet.
Um diesen Artikel zu kommentieren, melde Dich bitte an.